If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-20x-26=0
a = 4.9; b = -20; c = -26;
Δ = b2-4ac
Δ = -202-4·4.9·(-26)
Δ = 909.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{909.6}}{2*4.9}=\frac{20-\sqrt{909.6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{909.6}}{2*4.9}=\frac{20+\sqrt{909.6}}{9.8} $
| 12+5h=18 | | -4f=-28 | | -1.1+(y/4)=-7.5 | | 5(y+10-7=3(y-1)+2y | | -11e=-33 | | (6x-3)=(5x+5) | | 2-10y=15y+16 | | -1/2=4/5w-5/3 | | 2-b=b+6 | | 13d=13 | | b/14-4b/13=15/13 | | 8-2(m+4)=6m+24 | | (4x+8)=(7x-28) | | -3n+28=-8 | | (7x-38)=(5x+12) | | 2(2x-9)=5x+1 | | 3(2x+5)+5(6x+3)+2=36x+33 | | x/1500=0.18 | | -4(r+5)=-5 | | -7m+37=5(5-m) | | -28+n=0 | | 2(x-9)=5x+1 | | 3+41 c=9 | | -5=13—3c | | -11.3=u/5+1.2 | | -2+5p=p+6 | | 9w+81=18w | | x4+7x2-18=0 | | |3x+2|+7=11 | | -3-4b=b-8 | | -2+5p=p | | 20=2(r+27) |